Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60.013
1.
Cells ; 13(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38727276

In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.


Cell Transdifferentiation , Hair Cells, Auditory , Signal Transduction , TOR Serine-Threonine Kinases , Ubiquitin Thiolesterase , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Cell Transdifferentiation/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/cytology , Mice , Labyrinth Supporting Cells/metabolism , Labyrinth Supporting Cells/cytology , Indoles , Oximes
3.
Cancer Immunol Immunother ; 73(7): 124, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727837

BACKGROUND: The combination of immune checkpoint inhibitors and antiangiogenic agents has been effective in treating multiple cancers. This was further explored in an open-label, multicenter phase 2 basket study (NCT04346381), which evaluated the antitumor activity and safety of camrelizumab (an anti-PD-1 antibody) plus famitinib (a receptor tyrosine kinase inhibitor) in patients with advanced solid tumors. We herein report the findings from the cohort of advanced NSCLC patients who progressed after treatment with platinum-doublet chemotherapy and immunotherapy. METHODS: Eligible patients were enrolled and treated with camrelizumab (200 mg once every 3 weeks via intravenous infusion) and oral famitinib (20 mg once daily). The primary endpoint was the objective response rate (ORR). Secondary endpoints included the disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: Forty patients were enrolled in this cohort, with a median follow-up duration of 11.5 months. Three patients (7.5%) achieved a partial response, and 29 patients (72.5%) achieved stable disease. The ORR and DCR with this combination regimen were 7.5% (95% CI, 1.6-20.4) and 80.0% (95% CI, 64.4-90.9), respectively. The median DoR was 12.1 months (95% CI, 10.3-not reached). The median PFS was 5.4 months (95% CI, 4.1-7.5), and the median OS was 12.1 months (95% CI, 9.1-16.7). The estimated 12-month OS rate was 51.5% (95% CI, 34.9-65.9). The most frequent grade 3 or higher treatment-related adverse events occurring in more than 5% of patients included hypertension (27.5%), palmar-plantar erythrodysesthesia syndrome (10%), decreased neutrophil count (10%), and proteinuria (7.5%). CONCLUSION: Camrelizumab plus famitinib demonstrated favorable benefits in PFS and OS, along with manageable safety profiles, in patients with advanced NSCLC who progressed after platinum-doublet chemotherapy and immunotherapy. This finding warrants further exploration.


Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Male , Female , Middle Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Adult , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Immunotherapy/methods , Indoles , Pyrroles
4.
Eur J Med Chem ; 271: 116443, 2024 May 05.
Article En | MEDLINE | ID: mdl-38691887

Xanthine oxidase (XO) is a key enzyme for the production of uric acid in the human body. XO inhibitors (XOIs) are clinically used for the treatment of hyperuricemia and gout, as they can effectively inhibit the production of uric acid. Previous studies indicated that both indole and isoxazole derivatives have good inhibitory effects against XO. Here, we designed and synthesized a novel series of N-5-(1H-indol-5-yl)isoxazole-3-carboxylic acids according to bioisosteric replacement and hybridization strategies. Among the obtained target compounds, compound 6c showed the best inhibitory activity against XO with an IC50 value of 0.13 µM, which was 22-fold higher than that of the classical antigout drug allopurinol (IC50 = 2.93 µM). Structure-activity relationship analysis indicated that the hydrophobic group on the nitrogen atom of the indole ring is essential for the inhibitory potencies of target compounds against XO. Enzyme kinetic studies proved that compound 6c acted as a mixed-type XOI. Molecular docking studies showed that the target compound 6c could not only retain the key interactions similar to febuxostat at the XO binding site but also generate some new interactions, such as two hydrogen bonds between the oxygen atom of the isoxazole ring and the amino acid residues Ser876 and Thr1010. These results indicated that 5-(1H-indol-5-yl)isoxazole-3-carboxylic acid might be an efficacious scaffold for designing novel XOIs and compound 6c has the potential to be used as a lead for further the development of novel anti-gout candidates.


Carboxylic Acids , Drug Design , Enzyme Inhibitors , Isoxazoles , Xanthine Oxidase , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Isoxazoles/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemical synthesis , Carboxylic Acids/pharmacology , Carboxylic Acids/chemistry , Carboxylic Acids/chemical synthesis , Molecular Structure , Humans , Molecular Docking Simulation , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Dose-Response Relationship, Drug
5.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692166

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Indoles , Infrared Rays , Isoindoles , Lysosomes , Mitochondria , Nanoparticles , Organometallic Compounds , Photochemotherapy , Zinc Compounds , Zinc Compounds/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lysosomes/metabolism , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Nanoparticles/chemistry , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Singlet Oxygen/metabolism , Female , Folic Acid/chemistry
6.
Gut Microbes ; 16(1): 2347728, 2024.
Article En | MEDLINE | ID: mdl-38706226

Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase ß subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase ß subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.


Bifidobacterium , Gastrointestinal Microbiome , Indoles , Tryptophan , Tryptophan/metabolism , Humans , Indoles/metabolism , Bifidobacterium/metabolism , Bifidobacterium/genetics , Tryptophan Synthase/metabolism , Tryptophan Synthase/genetics , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism
7.
Gut Microbes ; 16(1): 2347722, 2024.
Article En | MEDLINE | ID: mdl-38706205

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Gastrointestinal Microbiome , Indoles , Mice, Inbred C57BL , Probiotics , Receptors, Aryl Hydrocarbon , Wnt Signaling Pathway , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Humans , Probiotics/administration & dosage , Probiotics/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Indoles/metabolism , Indoles/pharmacology , Radiation-Protective Agents/pharmacology , Organoids/metabolism , Radiation Injuries/metabolism , Radiation Injuries/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/radiation effects , Intestines/microbiology , Intestines/radiation effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
8.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Article En | MEDLINE | ID: mdl-38693863

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Carcinoma, Renal Cell , Cell Movement , Drug Resistance, Neoplasm , Kidney Neoplasms , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Movement/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Axl Receptor Tyrosine Kinase , Pyrroles/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Cell Proliferation/drug effects , Indoles/pharmacology
9.
Se Pu ; 42(5): 445-451, 2024 Apr 08.
Article Zh | MEDLINE | ID: mdl-38736387

Mycotoxins are toxic secondary metabolites produced by fungal species that can cause acute, subacute, and chronic toxicity in humans and animals. Thus, these toxins pose a significant threat to health and safety. Owing to the lack of effective antimold measures in the agricultural industry, feed ingredients such as corn, peanuts, wheat, barley, millet, nuts, oily feed, forage, and their byproducts are prone to mold and mycotoxin contamination, which can affect animal production, product quality, and safety. Cyclopiazonic acid (CPA), which is mainly biosynthesized from mevalonate, tryptophan, and diacetate units, is a myotoxic secondary metabolite produced by Penicillium and Aspergillus fungi. CPA is widely present as a copollutant with aflatoxins in various crops. Compared with some common mycotoxins such as aflatoxins, fumonisins, ochratoxins, zearalenones, and their metabolites, CPA has not been well investigated. In the United States, a survey showed that 51% of corn and 90% of peanut samples contained CPA, with a maximum level of 2.9 mg/kg. In Europe, CPA was found in Penicillium-contaminated cheeses as high as 4.0 mg/kg. Some studies have shown that CPA can cause irreversible damage to organs such as the liver and spleen in mice. Therefore, the establishment of a rapid and efficient analytical method for CPA is of great significance for the risk assessment of CPA in feeds, the development of standard limits, and the protection of feed product quality and safety. The QuEChERS method, a sample pretreatment method that is fast, simple, cheap, effective, and safe, is widely used in the analysis of pesticide residues in food. In this study, a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine CPA levels in feeds. The chromatographic separation and MS detection of CPA as well as the key factors affecting the extraction efficiency of CPA, including the type of extraction solvent, type of inorganic salt, and type and dosage of adsorbent, were optimized in detail. During the optimization of the chromatographic-separation step, the acid and salt concentrations of the mobile phase affected the separation and detection of CPA. During the optimization of the QuEChERS method, the addition of a certain amount of acetic acid improved the extraction efficiency of CPA because of its acidic nature; in addition, GCB and PSA significantly adsorbed CPA from the feed extract. Under optimal conditions, the CPA in the feed sample (1.0 g) was extracted with 2 mL of water and 4 mL of acetonitrile (ACN) containing 0.5% acetic acid. After salting out with 0.4 g of NaCl and 1.6 g of MgSO4, 1 mL of the ACN supernatant was purified by dispersive solid-phase extraction using 150 mg of MgSO4 and 50 mg of C18 and analyzed by UPLC-MS/MS. The sample was separated on a Waters HSS T3 column (100 mm×2.1 mm, 1.8 µm) using 2 mmol/L ammonium acetate aqueous solution with 0.5% formic acid and ACN as the mobile phases and then analyzed by positive electrospray ionization in multiple reaction monitoring mode. CPA exhibited good linearity in the range of 2-200 ng/mL, with a high correlation coefficient (r=0.9995). The limits of detection and quantification of CPA, which were calculated as 3 and 10 times the signal-to-noise ratio, respectively, were 0.6 and 2.0 µg/kg, respectively. The average recoveries in feed samples spiked with 10, 100, and 500 µg/kg CPA ranged from 70.1% to 78.5%, with an intra-day precision of less than 5.8% and an inter-day precision of less than 7.2%, indicating the good accuracy and precision of the proposed method. Finally, the modified QuEChERS-UPLC-MS/MS method was applied to the analysis of CPA in 10 feed samples obtained from Wuhan market. The analysis results indicated that the developed method has good applicability for CPA analysis in feed samples. In summary, an improved QuEChERS method was applied to the extraction and purification of CPA from feeds for the first time; this method provides a suitable analytical method for the risk monitoring, assessment, and standard-limit setting of CPA in feed samples.


Animal Feed , Food Contamination , Indoles , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Animal Feed/analysis , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Indoles/analysis , Mycotoxins/analysis
10.
Mikrochim Acta ; 191(6): 306, 2024 05 07.
Article En | MEDLINE | ID: mdl-38713247

For early diabetes identification and management, the progression of an uncomplicated and exceedingly responsive glucose testing technology is crucial. In this study, we present a new sensor incorporating a composite of metal organic framework (MOF) based on cobalt, coated with boronic acid to facilitate selective glucose binding. Additionally, we successfully employed a highly sensitive electro-optical immunosensor for the detection of subtle changes in concentration of the diabetes biomarker glycated haemoglobin (HbA1c), using zeolitic imidazolate framework-67 (ZIF-67) coated with polydopamine which further modified with boronic acid. Utilizing the polymerization characteristics of dopamine and the NH2 groups, a bonding structure is formed between ZIF-67 and 4-carboxyphenylboronic acid. ZIF-67 composite served as an effective substrate for immobilising 4-carboxyphenylboronic acid binding agent, ensuring precise and highly selective glucose identification. The sensing response was evaluated through both electrochemical and optical methods, confirming its efficacy. Under optimized experimental condition, the ZIF-67 based sensor demonstrated a broad detection range of 50-500 mg dL-1, a low limit of detection (LOD) of 9.87 mg dL-1 and a high correlation coefficient of 0.98. Furthermore, the 4-carboxyphenylboronic acid-conjugated ZIF-67-based sensor platform exhibited remarkable sensitivity and selectivity in optical-based detection for glycated haemoglobin within the clinical range of 4.7-11.3%, achieving a LOD of 3.7%. These findings highlight the potential of the 4-carboxyphenylboronic acid-conjugated ZIF-67-based electro-optical sensor as a highly sensitive platform for diabetes detection.


Blood Glucose , Boronic Acids , Diabetes Mellitus , Glycated Hemoglobin , Imidazoles , Limit of Detection , Metal-Organic Frameworks , Zeolites , Boronic Acids/chemistry , Zeolites/chemistry , Metal-Organic Frameworks/chemistry , Imidazoles/chemistry , Humans , Glycated Hemoglobin/analysis , Blood Glucose/analysis , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Nanoparticles/chemistry , Biosensing Techniques/methods , Indoles/chemistry , Polymers/chemistry , Electrochemical Techniques/methods
11.
WMJ ; 123(2): 144-146, 2024 May.
Article En | MEDLINE | ID: mdl-38718248

INTRODUCTION: Tarka (trandolapril/verapamil hydrohloride extended-release) is a fixed-dose combination antihypertensive drug formed from verapamil hydrochloride and trandolapril. Toxicologic manifestations of Tarka overdose are altered mental status, bradycardia, hypotension, atrioventricular block (first-degree), hyperglycemia, metabolic acidosis, and shock. CASE PRESENTATION: We report a case of Tarka toxicity in a 2-year-old girl who presented with altered mental status, cardiogenic shock, hypotension, bradycardia, severe metabolic acidosis, hyperglycemia, and first-degree atrioventricular block. We started fluid resuscitation, epinephrine, norepinephrine, and insulin. Because of the patient's hyperlactatemia and hypotension despite standard therapies, we initiated intravenous lipid emulsion (ILE) therapy, after which her condition improved promptly. DISCUSSION: Tarka overdose may be life-threatening as it can cause cardiogenic shock. In our patient, the regression of lactate elevation in a short time with ILE therapy and the improvement of her general condition highlight the importance of ILE. CONCLUSIONS: ILE is an alternative treatment method for acute lipophilic drug intoxications, such as Tarka.


Drug Overdose , Fat Emulsions, Intravenous , Insulin , Verapamil , Humans , Female , Fat Emulsions, Intravenous/therapeutic use , Insulin/poisoning , Drug Overdose/therapy , Drug Overdose/drug therapy , Verapamil/poisoning , Child, Preschool , Drug Combinations , Antihypertensive Agents/poisoning , Hypoglycemic Agents/poisoning , Indoles
12.
Clin Exp Pharmacol Physiol ; 51(6): e13866, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719209

Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.


Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Macrophages , Reactive Oxygen Species , Staphylococcus aureus , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects , Mice , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Pneumonia, Staphylococcal/drug therapy , Pneumonia, Staphylococcal/microbiology , Pneumonia, Staphylococcal/metabolism , Indoles/pharmacology , Mice, Inbred C57BL , Phagocytosis/drug effects , Lung/drug effects , Lung/microbiology , Lung/metabolism , Lung/pathology
14.
Mol Cancer ; 23(1): 91, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715012

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Signal Transduction , Humans , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Drug Resistance, Neoplasm/genetics , Acrylamides/pharmacology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Aniline Compounds/pharmacology , Cell Line, Tumor , Animals , Mice , Apoptosis , Cell Movement/genetics , Xenograft Model Antitumor Assays , Male , Female , Indoles , Pyrimidines
15.
Cell Host Microbe ; 32(5): 627-630, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723599

Microbial-based therapies have the potential to combat immunotherapy resistance, extending the boundaries of oncological therapeutics. In a recent issue of Cell, Jia et al. demonstrates an example of microbial collaboration to produce a postbiotic that promotes the stemness program of CD8+ T cells to augment immunotherapy at the pan-cancer level.


CD8-Positive T-Lymphocytes , Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , Indoles , Animals , Mice
16.
Biomed Mater ; 19(4)2024 May 10.
Article En | MEDLINE | ID: mdl-38697132

During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.


Doxorubicin , Drug Liberation , Indocyanine Green , Indoles , Manganese Compounds , Oxides , Photochemotherapy , Photosensitizing Agents , Polymers , Photochemotherapy/methods , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Indocyanine Green/chemistry , Indoles/chemistry , Animals , Manganese Compounds/chemistry , Humans , Polymers/chemistry , Cell Line, Tumor , Oxides/chemistry , Photosensitizing Agents/chemistry , Silicon Dioxide/chemistry , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Drug Delivery Systems , Nanoparticles/chemistry , Drug Carriers/chemistry , Porosity
17.
Sci Rep ; 14(1): 10419, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710746

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Indoles , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , HEK293 Cells , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Computer Simulation , COVID-19/virology , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis
18.
PeerJ ; 12: e17237, 2024.
Article En | MEDLINE | ID: mdl-38699192

Background: Root perforation repair presents a significant challenge in dentistry due to inherent limitations of existing materials. This study explored the potential of a novel polydopamine-based composite as a root repair material by evaluating its sealing efficacy, radiopacity, and surface topography. Methods: Confocal microscopy assessed sealing ability, comparing the polydopamine-based composite to the gold standard, mineral trioxide aggregate (MTA). Radiopacity was evaluated using the aluminium step wedge technique conforming to ISO standards. Surface roughness analysis utilized atomic force microscopy (AFM), while field emission scanning electron microscopy (FESEM) visualized morphology. Results: The polydopamine-based composite exhibited significantly superior sealing efficacy compared to MTA (P < 0.001). Radiopacity reached 3 mm aluminium equivalent, exceeding minimum clinical requirements. AFM analysis revealed a smooth surface topography, and FESEM confirmed successful composite synthesis. Conclusion: This study demonstrates promising properties of the polydopamine-based composite for root perforation repair, including superior sealing efficacy, clinically relevant radiopacity, and smooth surface topography. Further investigation is warranted to assess its clinical viability and potential translation to endodontic practice.


Aluminum Compounds , Calcium Compounds , Indoles , Oxides , Polymers , Root Canal Filling Materials , Silicates , Surface Properties , Polymers/chemistry , Indoles/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Root Canal Filling Materials/chemistry , Aluminum Compounds/chemistry , Humans , Drug Combinations , Microscopy, Electron, Scanning , Microscopy, Atomic Force/methods , Microscopy, Confocal , Materials Testing , Tooth Root/injuries , Tooth Root/diagnostic imaging , Tooth Root/surgery
19.
J Prev Alzheimers Dis ; 11(3): 549-557, 2024.
Article En | MEDLINE | ID: mdl-38706271

BACKGROUND: In an exploratory 91-participant phase 2a clinical trial (AscenD-LB, NCT04001517) in dementia with Lewy bodies (DLB), neflamapimod showed improvement over placebo on multiple clinical endpoints. To confirm those results, a phase 2b clinical study (RewinD-LB, NCT05869669 ) that is similar to AscenD-LB has been initiated. OBJECTIVES: To optimize the choice of patient population, primary endpoint, and biomarker evaluations in RewinD-LB. DESIGN: Evaluation of the efficacy results from AscenD-LB, the main results of which, and a re-analysis after stratification for absence or presence of AD co-pathology (assessed by plasma ptau181), have been published. In addition, the MRI data from a prior phase 2a clinical trial in Early Alzheimer's disease (AD), were reviewed. SETTING: 22 clinical sites in the US and 2 in the Netherlands. PARTICIPANTS: Probable DLB by consensus criteria and abnormal dopamine uptake by DaTscan™ (Ioflupane I123 SPECT). INTERVENTION: Neflamapimod 40mg capsules or matching placebo capsules, twice-a-day (BID) or three-times-a-day (TID), for 16 weeks. MEASUREMENTS: 6-test Neuropsychological Test Battery (NTB) assessing attention and executive function, Clinical Dementia Rating Sum-of-Boxes (CDR-SB), Timed Up and Go (TUG), International Shopping List Test (ISLT). RESULTS: Within AscenD-LB, patients without evidence of AD co-pathology exhibited a neflamapimod treatment effect that was greater than that in the overall population and substantial (cohen's d effect size vs. placebo ≥ for CDR-SB, TUG, Attention and ISLT-recognition). In addition, the CDR-SB and TUG performed better than the cognitive tests to demonstrate neflamapimod treatment effect in comparison to placebo. Further, clinical trial simulations indicate with 160-patients (randomized 1:1), RewinD-LB conducted in patients without AD co-pathology has >95% (approaching 100%) statistical power to detect significant improvement over placebo on the CDR-SB. Preliminary evidence of positive treatment effects on beta functional connectivity by EEG and basal forebrain atrophy by MRI were obtained in AscenD-LB and the Early AD study, respectively. CONCLUSION: In addition to use of a single dose regimen of neflamapimod (40mg TID), key distinctions between phase 2b and phase 2a include RewinD-LB (1) excluding patients with AD co-pathology, (2) having CDR-SB as the primary endpoint, and (3) having MRI studies to evaluate effects on basal forebrain atrophy.


Benzylamines , Fluorocarbons , Indoles , Lewy Body Disease , Humans , Lewy Body Disease/drug therapy , Lewy Body Disease/diagnostic imaging , Aged , Female , Male , Double-Blind Method , Magnetic Resonance Imaging , Biomarkers/blood , Aged, 80 and over , Neuropsychological Tests
20.
JNCI Cancer Spectr ; 8(3)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38697618

BACKGROUND: Nintedanib is a tyrosine kinase inhibitor with efficacy in bevacizumab-resistant colorectal cancer models. This phase I/II study evaluated the recommended phase II dose and efficacy of nintedanib and capecitabine in refractory metastatic colorectal cancer. METHODS: Key eligibility criteria included refractory metastatic colorectal cancer and ECOG performance status of 1 or lower. The primary endpoint was 18-week progression-free survival (PFS). A 1-sided binomial test (at α = .1) compared the observed 18-week PFS with a historic control of .25. RESULTS: Forty-two patients were enrolled, including 39 at the recommended phase II dose. The recommended phase II dose was established to be nintedanib 200 mg by mouth twice daily and capecitabine 1000 mg/m2 by mouth twice daily. The protocol was evaluated for efficacy in 36 patients. The 18-week PFS was 42% (15/36 patients; P = .0209). Median PFS was 3.4 mo. Median overall survival was 8.9 mo. Sixteen (44%) patients experienced a grade 3/4 adverse event, most commonly fatigue (8%), palmoplantar erythrodysesthesia (8%), aspartate aminotransferase elevation (6%), asthenia (6%), pulmonary embolus (6%), and dehydration (6%). Osteopontin levels at cycle 1, day 1 and cycle 3, day 1 as well as ΔCCL2 levels correlated to disease control at 18 weeks. CONCLUSIONS: The combination of nintedanib and capecitabine is well tolerated. Clinical efficacy appears to be superior to regorafenib or tipiracil hydrochloride monotherapy. Further investigation of similar combinations is warranted. CLINICALTRIALS.GOV IDENTIFIER: NCT02393755.


Antineoplastic Combined Chemotherapy Protocols , Capecitabine , Colorectal Neoplasms , Indoles , Progression-Free Survival , Humans , Capecitabine/administration & dosage , Capecitabine/therapeutic use , Male , Female , Middle Aged , Indoles/therapeutic use , Indoles/administration & dosage , Indoles/adverse effects , Aged , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Adult , Fatigue/chemically induced , Hand-Foot Syndrome/etiology , Aged, 80 and over , Drug Resistance, Neoplasm , Bilirubin/blood
...